| Domain | Code | Standard Description | Essential Vocabulary |
| :---: | :---: | :---: | :---: |
|  | HSA.APR. 1 | Add, subtract, and multiply polynomials. Understand that polynomials form a system comparable to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication | polynomial, closure |
|  | HSA.CED. 1 | Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. | linear equations, quadratic equations, rational equations, exponential, equations, inequalities |
|  | HSA.CED. 2 | Create equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with appropriate labels and scales. | coordinate plane, scale |
|  | HSA.CED. 3 | Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. | linear programming, constraint, feasible region |
|  | HSA.REI. 3 | Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters |  |
|  | HSA.REI.4b | Solve quadratic equations in one variable. <br> a) Use the method of completing the square to transform any quadratic equation in $x$ into an equation of the form $(x-p)^{2}=q$ that has the same solutions. <br> $(+)$ Derive the quadratic formula from this form. <br> b) Solve quadratic equations by inspection (e.g., for $\mathrm{x}^{2}=49$ ), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. <br> Recognize when the quadratic formula gives complex solutions and write them as $\mathrm{a} \pm \mathrm{b}$ for real numbers a and b . | completing the square, quadratic formula |
|  | HSA.REI. 6 | Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations in two variables. | linear combination, elimination method, substitution method |


|  | HS- <br> A.REI. 10 | Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane |  |
| :---: | :---: | :---: | :---: |
|  | HS <br> A.REI. 12 | Graph the solutions to a linear inequality in two variables as a half-plane. Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes | half-plane |
|  | HS- <br> A.SSE. 3 <br> a and C | Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. <br> a) Factor a quadratic expression to reveal the zeros of the function it defines. <br> b) Complete the square in a quadratic expression to produce an equivalent expression. <br> c) Use the properties of exponents to transform exponential expressions. | equivalent form, quadratic function, zero of a function, complete the square, maximum, minimum, vertex, exponent, exponential, rate of growth or decay |
|  | HS-F.IF. 2 | Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. | function notation |
|  | HS F.IF.7a | Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. <br> Graph linear and quadratic functions and show intercepts, maxima, and minima where appropriate. <br> a) Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. <br> b) Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. <br> c) (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. <br> d) Graph exponential and logarithmic functions, showing intercepts and end behavior. <br> e) Graph $f(x)=\sin x$ and $f(x)=\cos x$ as representations of periodic phenomena. <br> $(+)$ Graph trigonometric functions, showing period, midline, phase shift and amplitude. | Intercepts, maximum, minimum, end behavior |
|  | HS-F.IF. 9 | Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions |  |


|  | HS-F.LE. 2 | Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a table, a description, or two input-output pairs given their relationship. |  |
| :---: | :---: | :---: | :---: |
|  | HS- <br> N.RN. 4 | Perform basic operations on radicals and simplify radicals to write equivalent expressions | radicals, rationalizing the denominator |
|  | HS-S.ID. 7 | Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. <br> Interpolate and extrapolate the linear model to predict values. | Interpolate, extrapolate |

